BUTTON

-2

GND @DonAndrewBailey
donb@isecpartners.com

mailto:donb@isecpartners.com

whatis iSEC Partners?

1GEC

PARTNERS

Technology is The Great Equalizer

As Technology Increases, Control Decreases

S~
D S
B =
b

e,

el?.¥i‘§.a

o .
//
// // //
// [I~ /]
- el P e

Examples of Emerging Technology?

1d you to take your

J

prescriptions every day

No, really.

« Cellular enabled pill bottles
» Track pill usage remotely
- Email alerts when
= Pill count is low
= Pills haven’t been taken
= When its time to take your pill

Wait. That sounds bad.

But, it’s helping people.

- Alzheimer’s patients

 Children with severe diseases

- Physically disabled patients

» Overworked security consultants

Wait. That sounds good.

HEY, IT'M BEING
FOLLOWED BY

MONKEYS! ~_

s €FY

Everything will be a computer

Examples?

» Medical devices (personal, industrial)
» Industrial monitoring

- Automated Teller Machines
 Industrial/Commercial Alarm Systems
- Home Alarm Systems

e ...Car security systems

Common M2M Example from Microchip

M2M PICtail™ Daughter Board

Find Architectural Commonalities

- Baseband
= modules must be approved
= The approved list is public
= few features
= can’t drive Application Logic

» Microcontrollers
= Small RAM
= Small Code Space (flash)
= Minimal security surface (if any)

Find Architectural Commonalities

« Communication
= Network Comm = Baseband
s Peripheral Comm = uC

= Comm between Baseband & uC = UART

 Cryptographic Capability
= Only some Basebands provide HTTPS/SSL
» Usually only Java VM capable
= uC is usually baked (or non-existent)

Easiest Way to Attack?

o Sniff
o USART
= SPI
o [2C
- Debug ports
= JTAG
= SWIM
= DebugWire
o etc

The GoodFET

Open Source JTAG Adapter (and more)

« SPI

« J2¢C

- JTAG

« AVR

« Glitching

» SmartCard
» NordicRF
» PIC

Architecture

- Simple hardware architecture
= Few components
s Open Source

- Simple software architecture
= Python based
s Open Source

AVR Port

- Simple hardware architecture
= Few components
s Open Source

- Simple software architecture
= Python based
s Open Source

AVR GoodFET Requirements

- Simple board design

- Boot loader needed

» No soldering!

- Portable to almost any Atmel AVR

» Cheap!!

- Components must be easily accessible
= world wide

AVR GoodFET Hardware

« ATmega1284P

» One pull-up resistor (1K Ohm)

» One 0.1uF and one 1uF capacitor

« 20MHz external clock (Abracon ACHL-20MHZz)
- FTDI Cable

AVR Boot Loader

- 20MHz

» 0.5M USART baud rate
» Flash from file

» Flash from web

» Peek

- Signature

- Fuse bytes

- Page Size

donbl@] ocalhost . goodfet, donblL
boot loader found, entering command mode,
donbL> pagesz

donbl: retrieving page =ize

pagesz: 100

donbLy peek (x0

donbL: peeking address

peek 0 940c

donblL> peek OxZ

donbL: peeking address

peek Ox0Z: Q050

donbl> fusze

donblL: retrieving avr fuze and lock bytes
fuze: ff ff Sc el

donbls signature

donblL: retrieving awr signature
sighature: le 97 0b

roc calibration: bl

donblL: i

AVR Boot Loader

 Shouldn’t have to know Chip
= Requirement of Travis’

- Fromweb & signature = solution
= Request sig (1E9705)
= Download per-sig image 1E9705.hex
= Flash image

» Fuses can be validated per signature
= Each chip has slightly different fuses

donbldlocal host goodfet , donbl
boot. loader found, entering command mode,

donbl> flash goodfet, hesx

donblL: flashing image

pagesz: 100

L e L =L
donbl reset

boot. loader found, entering command mode,

donbl® zighature

donblL: retrieving awr =ignature

signature: le 97 0&

roc calibration: bl

donbl> |

Boot Loader Bugs

- A section can’t exceed one file

» Can’t use .data, .bss

- Word address versus Byte address

» Vectors are /required/

» IVTs must get naked (ISR -> BL._ISR)

- WatchDog spinlock

- Pgm_read_byte_far() is buggy

» Undocumented bits in —P models (SIGRD)

AVR Port Code

» Build library files

- Integrated “donbfet” support
» Adjusted for silly AVRnesses
« Go!

donb@localhost platform=donbfet ,/goodfet.monitor apps full
GoodFET with 0000 MCU
Clocked at 0x0000
Build Date; 2011-10-10 23:31
Firmware apps:
Monitor
The monitor app handles basic operations on the MSP430
such as peeking and poking memory, calling functions and
mahaging the baud rate,

SPI
The SPI app handles the SPI bus protocol, turning
your GoodFET into a USB-to-SPI adapter,
AYR
The AYR app adds support for debugging AVYR based devices,
JSCAN
The JScan app adds support for JTAG brute-force scanning,
donb@localhost platform=donbfet ,/goodfet,avr info

Identifies as Atmel 0x9705, lock=ff
donb@localhost i

JTAG Scanning

What is JTAG?

- Standard for debugging/monitoring chips

- Originally used to test manufactured equipment
 Used to test/debug embedded devices

- Simple state machine protocol

- Daisy chain-able

- Field updates!

What is JTAG?

- 5 Pins
= TCK — Clock
= TMS — Mode Select
= TDI — Data In
= TDO — Data Out
= TRST — Reset
« TRST is “optional”
= Not always (AVR)

Test-Logic-
Reset

v Select 1

T
A
1
A

. __ DR-Scan ./

0
¥
/l< Eaptur&DR)
0
L 3
f__.C Shift-OR ,D”
1

.1

i Select
"\ IR-Sean
0
h 4
(l< Capture-1R
0
L 3

_{ ShiftIR

l(Update-DR }4—/
J‘I |-|}

Update-IR

A

J1 ’J{r

JScan Application

» 646 Lines of C (firmware)

» 143 Lines of Python (client)
» Dynamic Pin definition

» Control endianness

- Select delay (pin state sync)
» Store/retrieve results

» Core is based on

= Hunz’s slides
= ArduiNull (LeKernel)

How Do We “See” JTAG?

- 11111b is Always a state machine Reset
« Then

= 0: Run Test Idle

= 1: Select DR

= 1: Select IR

s 0: Capture IR

= 0: Shift IR
« Shift IR activates TDO

» Shift in via TDI, monitor TDO

Hunz’s Method

 Only 4 pins are required

* Yes, still NRST

- Still N! operations

- Approximately 120 tests per minute

donb@localhost

scan verb: 7f

scan count: 01

addpin returned ID 80
scan verb: 7f

scan count: 01

addpin returned ID 81
scan verb: 7f

scan count: 01

addpin returned ID 82
scan verb: 7f

scan count: 01

addpin returned ID 83
scan verb: 7f

scan count: 01

addpin returned 1D 84
Endian is 0x01

Endian set 0x01

Delay is Ox01

Delay set Ox01
donb@localhost

scan verb: 7f
donb@localhost

scan verb: 7f

scan count: 05

tck=80, tms=082, tdi=B83, tdo=81, nrst=84

./jscan,sh

platform=donbfet ,/goodfet, jscan scan

platform=donbfet ,/goodfet, jscan results

Results

* ~0.55% FP rate
s 5 PIns
s 6 pins
s 77 pINs
s 8 pins
 @20MHz, 120 tests per minute
« Pull-ups are required
- False positives are easy to detect
» Output arrays should feed other Apps

Issues

- False positives often drive invalid states
= Logic gate w/ power control

« Delays should be adjusted when R = 0
« 220 — 330 Ohm resistors Must be used
» Output -> App requires dynamic Pin control
 Can only fit ~100 results in response
= Limited by GoodFET protocol

Future Requirements

 Select “Profile” mode (i.e. AVR, ARM, etc)
 Fingerprint JTAG subtleties

- Automated target power control ala JTagger
- Apps should interleave

» Protocol scanning should be genric
= Pattern based

- Language should define pattern

Demo

Summary?

» Need More Tools like GoodFET and UberTooth
» Opening up GoodFET’s arch further will help

« JTAG scanning 1s easy

- Integrating it is hard

- Other protocols are needed

Thanks to...

» 1ISEC Partners
 Travis Goodspeed
» Mike Kershaw

» Mike Ossmann

» Nick DePetrillo

e hunz@hunz.org

» LeKernel.net

mailto:hunz@hunz.org

